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The human default network (DN) plays a critical role in internally directed
cognition, behavior, and neuropsychiatric disease. Despite much progress
with functional neuroimaging, persistent questions still linger concerning the
electrophysiological underpinnings, fast temporal dynamics, and causal impor-
tance of the DN. Here, we review how direct intracranial recording and stimu-
lation of the DN provides a unique combination of high spatiotemporal
resolution and causal information that speaks directly to many of these out-
standing questions. Our synthesis highlights the electrophysiological basis of
activation, suppression, and connectivity of the DN, each key areas of debate in
the literature. Integrating these unique electrophysiological data with extant
neuroimaging findings will help lay the foundation for a mechanistic account of
DN function in human behavior and cognition.

Toward a Deeper Understanding of the Default Network
Serendipity has played an eminent role in the history of scientific discovery: chance
observations and insights are alleged to lie at the root of many major and minor break-
throughs [1]. Every innovation must subsequently be refined and scrutinized, however;
every paradigm shift in scientific thinking must be followed by years or decades of
rigorous and painstaking ‘normal science’ [2]. The fortuitous discovery of the default
mode network [or default network (DN), see Glossary] some 20 years ago provides a
prototypical example [3–5]: the unexpected observation that a consistent set of brain
regions showed reduced cerebral blood flow (‘deactivated’) during a variety of cognitive
tasks (compared to rest [4,5]) seeded a paradigm shift in our view of the functional
architecture of the brain [6–8].

The human DN is now well known as a collection of associative brain regions distributed over
the temporal, parietal, and frontal lobes (Figure 1), readily identifiable by correlated sponta-
neous fluctuations in the fMRI blood oxygen level-dependent (BOLD) signal. The DN is just
one of numerous distributed intrinsic brain networks [9–12] identified during the resting
state and persistently correlated during a variety of cognitive tasks [13,14] and states of
consciousness [15–17]. Despite much progress with neuroimaging [18], persistent ques-
tions still linger concerning the electrophysiological underpinnings, fast temporal dynamics,
and causal importance of the human DN. We require a fuller understanding of how this
canonical brain network contributes to human cognition and behavior, and how its patho-
logical modulation relates to neuropsychiatric disorders. Such an understanding calls for a
detailed neuromechanistic account that explains the DN’s internal dynamics and interac-
tions with other intrinsic networks with high anatomical precision and temporal resolution.
Moreover, the relationships between DN activity and human subjective experience and
behavior need to be explored with causal methods that go beyond mere correlative
observations.

Highlights
Understanding of the default network
(DN) is rapidly progressing from a rela-
tively coarse picture toward more
detailedmodels, inwhichnetworknodes
contain functionally heterogeneous neu-
ronal populations with distinctive intra-
and internetwork connectivity.

Intracranial electroencephalography
(iEEG) is providing unique data about
the precise temporal profiles of neuronal
populations throughout the DN, and
their functional role(s) in the network’s
deactivations, activations, intrinsic
activity, and interactions with other brain
networks.

IEEG is also providing critical corro-
borative data elucidating the electro-
physiological foundations of signals
observed with neuroimaging.

IEEG methods are being used not only
to passively record but also to causally
probe and perturb the DN’s functioning
and interactions with other networks.

Intracranial methods are being devel-
oped as electroceutical interventions
for neuropsychiatric disorders impli-
cating the DN.
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Intracranial electroencephalography (iEEG) (Box 1) has much to contribute to this
endeavor, by providing direct recording and stimulation data from the human brain. Typically,
iEEG is undertaken in patients undergoing monitoring for epilepsy surgery, and involves the
placement of electrode grids directly on the cortical surface (see Figure I in Box 1), and/or the
insertion of depth electrodes which can contact deep cortical and subcortical structures. With
high anatomical precision (at the level of neuronal populations), high temporal resolution (at
the millisecond scale), and high signal-to-noise ratio (at the level of several-fold signal increase)
[19], iEEG provides the necessary fine-scale view of the human brain to both advance and refine
our knowledge of the DN. Although the tools of iEEG and electrical brain stimulation have been
available for decades, recent advances in computational methods have given rise to entirely
novel means of charting and perturbing the engagement of local neuronal populations and
larger functional networks. For example, gauging the power of the electrophysiological signal in

Glossary
Default network (DN): a collection
of associative brain regions that
consistently deactivate during
externally directed tasks (e.g., visual
search), while conversely showing
activation during internally directed
tasks (e.g., memory retrieval). Like
other intrinsic networks, DN regions
display robustly correlated
hemodynamic activity during resting
states. Anatomically, key nodes of
the DN include the medial prefrontal
cortex, medial parietal cortex
(retrosplenial cortex, posterior
cingulate cortex), aspects of the
medial temporal lobe, inferior lateral
parietal cortex (angular gyrus), middle
temporal gyrus, and parts of
ventrolateral and dorsomedialst
prefrontal cortex (Figure 1).
Electroceutical interventions:
clinical interventions utilizing
intracranial electrical stimulation and
modulation to ameliorate
neurodegenerative (e.g., Parkinson’s
disease) and psychiatric (e.g., major
depression) illness; focal
neuromodulation nonetheless has
indirect effects on the metabolism
and functioning of widespread brain
networks.
Envelope: an alternative term for the
time varying ‘analytic amplitude’ of a
frequency band limited signal,
typically squared to obtain ‘power’. A
common metric used for correlating
task or resting-state activity between
intracranial electroencephalography
(iEEG) recording sites.
High-frequency broadband (HFB):
nonoscillatory, high-frequency
(>50 Hz) activity in the cortical field
potential; a primary signal of interest
in iEEG studies, known to be
correlated with the fMRI blood
oxygen level-dependent (BOLD)
signal as well as averaged neuronal
population spiking activity.
High-frequency electrical brain
stimulation (hf-EBS): injection of
electrical current into brain tissue via
intracranial electrodes, typically using
square-wave pulses at �50 Hz and
1–10 mA. Routinely used in clinical
mapping sessions to determine
localization of function, hf-EBS often
elicits subjective experiences or
perturbs ongoing cognition and
perception, providing a potent tool
for causally exploring regional
functionality.

(A)

Default network

fMRI

iEEG

Dorsomedial
prefrontal cortex Inferior parietal lobule

Angular gyrus
Posterior cingulate cortex

Retrosplenial
cortex

Medial temporal
lobe

Medial
prefrontal

cortexVentrolateral
prefrontal

cortex

Lateral temporal
cortex

Temporopolar
cortex

(B)

Figure 1. Intracranial Electrophysiology of the Human Default Network. (A) The human default network (DN) as
assessed using intrinsic connectivity fMRI during the resting state in 1000 participants [9]. The network is distributed
throughout the brain: in the frontal lobe, medial prefrontal cortex (PFC), dorsomedial PFC, and ventrolateral PFC; in the
temporal lobe, temporopolar cortex, lateral temporal cortex, and aspects of the medial temporal lobe (MTL); and in the
parietal lobe, the posterior cingulate cortex and retrosplenial cortex medially, and angular gyrus laterally. Although there is
general consensus on this collection of regions, specific network borders vary depending on methods and modality used,
and the notion of what constitutes the DN continues to evolve [55]. Because much of the MTL falls outside DN boundaries
using standard methods, as a rule we do not discuss iEEG investigations of the MTL throughout this review unless they
bear directly on questions relating to the function of other DN regions (for a review covering many iEEG studies involving the
MTL, see [103]). (B) Combining iEEG data from cohorts of patients can provide comprehensive coverage of the brain,
including all cortical DN regions (here we show 1955 electrode sites from 16 patients). There are two basic types of iEEG
recording [19]: (i) electrocorticography (ECoG), using subdural grids or strips of circular (plate-shaped) electrodes placed
on the brain’s surface, can record from lateral or medial cortical DN areas. Grids often contain dozens of contacts, allowing
coverage of, and simultaneous recording from, a substantial proportion of cortex. (ii) Stereotactic EEG (SEEG) uses
cylindrical depth electrodes which penetrate through the skull and brain tissue and can reach deep medial cortical and
subcortical structures, including midline DN regions. Each depth electrode typically contains 6 to 10 contacts. For more
details, see [19] and Box 1.
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Intracranial
electroencephalography (iEEG): a
suite of methods for invasively
monitoring the brain’s electrical
activity and directly stimulating brain
tissue. Includes grids and strips of
electrodes placed subdurally on the
cortical surface (also known as
electrocorticography, or ECoG), as
well as depth electrodes that
penetrate brain tissue and reach
deep cortical and subcortical
structures (also known as
stereotactic EEG, or SEEG).
Intrinsic brain network: a set of
spatially segregated brain regions
displaying interregional correlated
spontaneous activity (on the scale of
minutes and longer) that is persistent
across cognitive and conscious
states (e.g., tasks and rest, waking
and sleep).
Neuronal population: the group of
nearby neurons (�200 000–500 000)
thought to make the main
contribution to the local signal
recorded from a given intracranial
electrode contact.

the high-frequency broadband (HFB) range (>50 Hz, also known as ‘high gamma’; see
Box 2) has provided a new metric of cortical activation that correlates well with both fMRI BOLD
signals [20,21] and averaged neuronal spiking activity [22], providing a potent means of
replicating and extending findings from human neuroimaging and animal neurophysiology,
respectively (Box 3).

Box 1. An Overview of the Intracranial Electroencephalography Method

Functional and morphometric MRI have undoubtedly played the starring role in the discovery and subsequent
investigation of the default network (DN) [4,8,42,105]. Yet even as the DN continues to occupy the spotlight in much
of contemporary cognitive and clinical neuroscience research, noninvasive and correlational neuroimaging methods
continue to confront important technological barriers. Limited temporal resolution, poor signal-to-noise ratio, and lack of
causal data from neuroimaging have left in their wake many persistent and critical questions that intracranial electro-
encephalography (iEEG) can make a unique contribution to answering.

The spatial precision of the iEEG signal lies between that of classic local field potentials and scalp EEG [106]. Similar to
scalp EEG, iEEG records the brain’s endogenously produced electrical potentials, but by bypassing the filtering
properties of the meninges, skull, and scalp, iEEG gains a huge increase in signal-to-noise ratio and a widening of
the detectable spectrum of neural activity. Moreover, the recorded signal has great anatomical precision, since the
inverse problem (i.e., inferring the precise source of recorded signals) is greatly mitigated. The fundamental recorded
activity is the cortical field potential, a rich signal thought to represent a summation primarily of synaptic currents and
neuron spiking near the electrode [19,106,107]. Although the recorded signal does not reveal the precise spiking of
specific neurons (the ‘trees’), it does reliably measure the engagement of the ‘forest’ (population) of neurons (an
estimated 200 000–500 000 neurons [19]). iEEG therefore provides mesoscale-level data, uniquely complementary to
the cellular level of mapping with single-neuron recordings in animals and the regional/whole-brain level of mapping in
humans, with neuroimaging.

iEEG’s powerful combination of high anatomical and temporal resolution can contribute unique and hitherto unknown
information to the field of human neuroscience. With electrode contacts placed directly on the surface of the cortex (in
grids; Figure I) or deep within brain structures (with cylindrical depth electrodes), unlike single-unit recordings, iEEG can
often capture simultaneous recordings across a large mantle of the human brain (up to �200 electrodes in a single
patient). By recording simultaneously from several nodes of a network, iEEG signals can reveal information about
functional interactions within and across networks during different stages of neural computation even during complex
cognitive, affective, and perceptual tasks requiring human participants. Furthermore, the method allows delivery of a
volley of electrical discharges directly to a brain region in awake human participants [93,94], providing the ability to
causally perturb subjective experience and behavioral performance, as well as modulate network activity (Box 3) and
potentially treat neuropsychiatric disease (Box 4).

Surface array
(A) (B)

Depth array

Figure I. Intracranial Electroencephalography Refers to the Invasive Measure of Electrical Brain Potentials
via Two Common Methods. (A) Electrocorticography (ECoG) utilizes strips or grids of electrode arrays placed
subdurally on the cortical surface. (B) Stereo-electroencephalography utilizes penetrating depth electrode arrays based
on stereotactic coordinates for targeting deeper brain structures.
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This Review provides an accessible synthesis of the most recent iEEG findings related to the DN
for researchers both in and outside the field of human intracranial electrophysiology. We aim to
promote crosstalk among disciplines and explore how iEEG findings can help transform our
understanding of the DN. In the text that follows, we synthesize the DN iEEG literature pertinent
to: (i) task-induced deactivations, (ii) task-induced activations, (iii) intra- and internetwork
connectivity, and (iv) the causal effects of electrical stimulation.

Box 2. Understanding High-Frequency Activity in the Brain

The high-frequency broadband (HFB) signal is currently interpreted as a reflection of a non-oscillatory broadband signal
[146,147]. Importantly, HFB differs from pathological high-frequency oscillations (HFOs) that are seen in epileptic
recording sites. Unlike HFB signals, HFOs are associated or coupled with interictal epileptiform discharges and/or
pathological background activity at the recording site and can be present across several adjacent electrodes [148,149]
(Box 1).

A growing body of evidence suggests that high-frequency activity is a reliable electrophysiological correlate of
underlying population spiking activity generated by thousands of neurons [21,150–153]. HFB signals also correlate
with hemodynamic signals detected with fMRI [20–22,154,155]. Thus, an increase in the HFB power in a recording
site represents the local engagement of the cortical tissue underneath or around the electrode. There is strong
evidence that, unlike slow oscillatory activity, the HFB signal has a remarkably localized anatomical precision and
originates from the cortical tissue immediately around or underneath the recording electrode; for human intracranial
electroencephalography (iEEG) evidence, see [28,30,47,156–159], and for direct measures from non-human pri-
mates, see [151–154].

There is evidence from non-human brains that the number of cells contributing to the high-frequency signal may be as
little as �16% of neurons sampled by a given electrode [160] and that the source of the high-frequency signal is often
within several hundreds of micrometers from the electrode tip [152,161,162]. Given the specifics of iEEG electrodes and
recording parameters, our assumption is that the iEEG signal is rooted in the activity of a diverse population of cells in the
millimeter space (for a recent, in-depth review, see [19]).

Box 3. Advantages of Combining Intracranial Electroencephalography with Other Modalities

There are many applications of combining intracranial electroencephalography (iEEG) with other methods, particularly
fMRI. Here we highlight several examples, but the possibilities of such multimodal investigations are still just beginning to
be explored.

Providing Functional Context for Electrode Localization: Although the anatomical location of intracranial electrodes
can be reconstructed with relatively high precision, functional brain networks vary considerably across individual
neuroanatomy [108,109]. Anatomical landmarks alone are therefore at best a coarse indicator of regional function,
but resting-state fMRI scans can provide relatively reliable estimates of subject-specific brain networks [110,111],
allowing particular electrodes to be assigned with some confidence to individually specified functional networks
[87,111,112].

Putting Novel iEEG-Elicited Effects into Broader Context: While iEEG can discover novel effects, its sparse coverage of
the brain often renders it uninformative about the whole-brain relevance of these unique findings. fMRI can supplement
the paucity of recording sites in iEEG and provide complementary whole-brain data that clarifies and corroborates iEEG
findings (e.g., [112]).

Understanding Effects of Focal Electrical Stimulation in Brain Disease: With the increasing use of intracranial methods to
treat neurological and psychiatric disease, combined pre- and postintervention positron emission tomography and fMRI
scanning has already been employed to elucidate how focal electroceutical interventions affect functioning of the
default network [113–115]. Neuroimaging will continue to play a key role in corroborating and understanding the brain-
wide and long-term effects of targeted intracranial stimulation (Box 4).

Simultaneous Multimodal Investigations: Progress is being made in developing ways of safely combining iEEG with both
fMRI [116,117] and magnetoencephalography (MEG) [118,119] in humans, which could open up many new possi-
bilities, for instance directly observing the whole-brain effects of focal electrical stimulation [120].
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Electrophysiological Correlates of Task-Induced Default Network
Deactivations
The first finding from neuroimaging suggesting the DN was a coordinated functional system
was the observation of reduced cerebral blood flow in DN regions during engagement in
externally directed tasks, such as visual search [4,5], compared with a resting or baseline state.
Some of the earliest intracranial investigations therefore explored whether parallel electrophys-
iological markers of deactivation could be observed with iEEG (Figure 2A–C ). For iEEG data,
‘deactivation’ would be reflected in reductions in power of high-frequency activity (such as HFB)
relative to the pre-stimulus period (typically, 100–200 ms prior to the onset of a given stimulus).
Beginning in 2008, researchers began to note suppression of HFB power in response to
externally directed tasks in isolated DN regions, such as ventrolateral [23] (20–150 Hz) and
rostromedial [24] prefrontal cortex (PFC) (50–150 Hz). Subsequent studies reported similar
deactivations in HFB activity while recording from multiple DN regions simultaneously [25–27].
Critically, some studies have explored the various cognitive and behavioral correlates of
electrophysiological DN deactivations [27,28], and parallel work has confirmed that anatomical
sites of iEEG deactivation are indeed localized within subject-specific DN boundaries as
identified with resting-state fMRI [29,30].

Collectively, these investigations have revealed essential information about the DN spe-
cifically and the fMRI BOLD signal more generally. First, these data have helped clarify the
neurophysiological contributions to fMRI BOLD signal decreases. Early concerns had been
raised that apparent deactivations in neuroimaging data were of non-neural origin, for
instance, caused by cardiac or respiratory artifacts [31] or vascular ‘stealing’ [32]. Task-
induced suppression of iEEG HFB activity, a correlate of averaged neuronal firing, provides
compelling evidence that DN deactivations seen in neuroimaging studies have a firm
grounding in the electrophysiological activity of neuronal populations within DN regions
(Figure 2A), a conclusion further supported by single-neuron data from non-human
primates [33].

Second, HFB suppression in various DN areas is observed in response to a wide variety of
externally directed tasks (as with neuroimaging [5]), including visual search [27], reading [23,26],
a backward-masking visual categorization task [34], the Navon ‘global versus local’ attention
task [26], and arithmetic calculation [28–30,35]. These findings support the conclusion from
neuroimaging studies that DN deactivations are a common, domain-general response to the
demands of externally directed attention.

Third, not all DN areas deactivate at the same time [26,27] (Figure 2B; but for an exception, see
[34]). The finding of subtle differences in mean timing of iEEG deactivations across DN nodes
highlights an important contribution made possible by the high temporal resolution of iEEG.
Indeed, the ability to temporally dissociate responses within the DN is a critical domain of
progress uniquely served by iEEG (see ‘Electrophysiological Correlates of Intra- and Internet-
work Interactions,’ below).

Finally, the timing and magnitude of HFB suppression have functional significance. The duration
of HFB suppression correlates with reaction time [27,28] (consistent with magnitude-reaction
time correlations with fMRI [36]). Additionally, both the duration and magnitude of HFB
deactivations are associated with task complexity, with more complex tasks inducing longer
and larger iEEG deactivations [27] (Figure 2C) (a finding observed early on with fMRI [5,37]).
Both findings suggest that deactivation represents not merely the relative quiescence of a
network not participating in a given task, but instead might be an active process of functional
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suppression important for successful task performance. Increasing task complexity/difficulty
also reliably leads to reductions in self-reported mind-wandering and other internally directed
thought processes (e.g., [38,39]); whether or not these psychological effects are directly related
to differential duration and magnitude of deactivation in default areas is an important question
that should be explored in future research (cf., [37]).
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Figure 2. Unique Contributions to Understanding Default Network Deactivations and Activations from Intracranial Electroencephalography. (A)
Default network deactivation in response to a visuomotor task consists largely of rapid suppression of power in higher frequency ranges (>30 Hz). Hot colors
indicate increased power, and cool colors decreased power, at given frequencies. These, and similar findings from other studies, constitute a major advance in
understanding the electrophysiological basis of default network (DN) deactivations observed with neuroimaging. (B) Timing of deactivation matters: whereas
neuroimaging findings might suggest that the entire DN deactivates simultaneously, intracranial electroencephalography (iEEG) shows that there are subtle (yet
probably important) timing differences in the onset of higher frequency ‘gamma band deactivations’ (GBD) in response to the presentation of complex visual task
stimuli. (C) The duration of deactivations is also of functional significance: a more difficult visual search task elicited significantly longer suppressions of high-
frequency power in default regions. (D) Certain neuronal populations in the posteromedial cortex (PMC) are significantly activated (electrodes with red fill color) by a
variety of internally directed cognitive tasks; (E) eliciting power increases specifically at higher frequencies (hot colors indicate increased power, cool colors
decreased power). (F) The mean magnitude of PMC activations in the high-gamma (HG) band (70–180 Hz) can differentiate between conditions, with the largest
activations for the most episodic/memory-like judgments. By contrast, significant suppression of high-gamma power is evident during an externally directed math
task (i.e., judging the accuracy of simple arithmetic equations); ** indicates activity is significantly different from all other conditions (P < 0.01, corrected). (G)
Intraregional functional heterogeneity within the PMC. Certain populations show preferential activation in response to memory retrieval, others are selectively active
during rest periods, and yet others show mixed patterns. Default regions often treated as functionally homogeneous in neuroimaging investigations in fact contain
populations with very diverse response profiles. (A) Reproduced, with permission, from [34]; (B,C) reproduced, with permission, from [27]; and (D–F) reproduced,
with permission, from [28]; and (G) adapted, with permission, from [52]. Abbreviations: LTC, lateral temporal cortex; MPFC, medial prefrontal cortex; TPJ,
temporoparietal junction; VLPFC, ventrolateral prefrontal cortex.

312 Trends in Cognitive Sciences, April 2018, Vol. 22, No. 4



Electrophysiological Correlates of Task-Induced Default Network Activations
Whereas externally directed cognitive tasks often evoke DN deactivation, DN activation (i.e.,
relative increases of cerebral blood flow or BOLD signal strength compared with the control
condition) is linked to many forms of internally directed cognition [40,41] such as self-referential
thinking [42], mind-wandering [43,44,163], simulation of the future [45], and remembrance of
the past [46]. The unique strengths of iEEG are helping to disentangle the complex functionality
and electrophysiology of DN activation by providing detailed information about the time course,
magnitude, and selectivity of signals from recording sites throughout the network. Collectively,
investigations of DN activation have allowed us to reach several broad conclusions about the
temporal dynamics of, and role(s) played by, different regions and neuronal populations.

First, the electrophysiology of DN activations comprises increases in HFB power (compared
with pre-stimulus baseline) concomitant with decreases in lower frequency ranges, such as
alpha and theta [29,30] (Figure 2E), mirroring results from intracranial investigations of motor
and sensory cortices [47]. This finding complements the spectral changes that characterize DN
deactivations, which typically show the opposite pattern of power change [27,34] (Figure 2A),
and contrasts with intrinsic resting state DN activity, where theta oscillations predominate [48].

Second, similar to the breadth of internally directed processes that activate the DN in neuro-
imaging [49,50], a variety of internally directed tasks increase HFB power in DN neuronal
populations [28–30,51,52] (Figure 2F). Increased high-frequency (30–180 Hz) power was first
reported [29] in the posterior cingulate cortex (PCC) and retrosplenial cortex (RSC) during self-
referential judgments (consistent with fMRI [53]), with numerous iEEG studies having since
replicated these observations in these and other default areas [28,30,51,52].

Third, the magnitude of DN activations has functional significance (as it does for deactivations).
Specific neuronal populations (i.e., electrode sites) showing larger HFB power increases for a
given type of internally directed cognition (such as episodic memory recall) tend to be more
active for similar kinds of mentation, such as self-referential judgments [28]. Activation magni-
tude can also distinguish between different types of internally directed cognition. For instance, a
recent study [28] found a clear tuning of HFB activations for self-referential judgments in PCC
and RSC: larger responses were elicited by more episodic/autobiographical judgments (e.g., ‘I
ate fruit yesterday’), compared with more general semantic (e.g., ‘I eat fruit often’) or personal
judgments (e.g., ‘I am kind’) (Figure 2F). Moreover, PCC/RSC neuronal populations more active
for autobiographical judgments also showed larger deactivations during an externally directed
attentional task (arithmetic calculation) [28].

Fourth, not all populations within DN areas respond in the same way (Figure 2G), suggesting that
large-scale parallels between DN activationacross fMRI and iEEG representonly a coarse picture of
averaged signals in a given region. Although DN regions, and even the entire network, are often
treated as functionally homogenous in the neuroimaging literature, some pioneering efforts at finer
functional-anatomic fractionations have been undertaken in recent years [54–57]. These fMRI
studies hint at the possibility that particular DN regions, too, might contain functionally heteroge-
neous neuronal populations. In keeping with this, a study [29] using direct recordings from the DN
hub in the posteromedial cortex (PMC) found only a small subset of recording sites displaying high-
frequency (30–180 Hz) power increases to self-referential judgments. A more recent study [52]
involved a larger cohort of 13 individuals who alternated between evaluating autobiographical
memory and arithmetic statements, and staring at a fixation cross at the center of a dark blank
screen (‘fixation rest’). Recording from multiple sites within each individual patient’s PMC revealed
clear functional heterogeneity across three distinct populations of neurons within this DN hub.
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Anatomically distinct clusters of neuronal populations in the PMC showed activations (in the HFB
range) during either memory processes or fixation rest, and within-subject analysis showed that
rest-active sites were (on average) located more dorsally than memory-active sites. Such spatially
overlapping but functionally heterogeneous populations (Figure 2G) can only be appreciated with a
method that offers a unique combination of subject-specific anatomical precision, high signal-to-
noise ratio, and simultaneous recordings with tens of electrodes across a cortical region (Box 1).
Moreover, there were subtle differences in the temporal domain as well. Some populations showed
fast, time-lockedactivations at thebeginningof fixationrest trials (i.e., ‘switch sites’). These neuronal
populations might help shift the brain froman externally directed attentional state to a more internally
focused one, as participants become free to explore their own thoughts and surroundings (cf.
[58,59]). Conversely, this fast, time-locked, and seemingly automatic activity following the switch
from externally focused attention to fixation rest is unlikely to reflect the re-emergence of sponta-
neous thoughts (as the time of onset of HFB activity is too quick for any spontaneous thought to
occur). Other clusters of PMC neurons showed a slow, temporally jittered rise of activity during
fixation rest. Such variable and delayed temporal dynamics suggest that these populations of PMC
neurons could be engaged in the arising of stimulus-independent spontaneous cognition, which is
unlikely to occurwith consistent timingacross trials [60]. Finally, a thirdtypeofneuronal population in
the PMC showed time-locked activations during the memory condition, and often deactivated
during the math condition; the relatively late (>300 ms) recruitment of these populations suggests
that the PMC is likely engaged after the medial temporal lobe (MTL).

Although high-resolution/long-duration single-subject recordings and multi-voxel pattern anal-
ysis with fMRI have begun to provide considerably greater spatial precision, the distinct
temporal profiles described above would be impossible to isolate with neuroimaging methods.

Electrophysiological Correlates of Intra- and Internetwork Interactions
Network neuroscience views the brain as functioning via widely dispersed but interconnected
regions coordinating their activity across multiple timescales [61,62]. Fine temporal resolution
methods are therefore needed to track how neocortical dynamics are modulated at both fast
(>40 Hz) and slow (<1 Hz) frequencies. iEEG is now beginning to furnish detailed data about fast
temporal dynamics to complement slower-timescale data from neuroimaging. These new data
can advance our understanding of intra- and internetwork interactions in several ways. First, iEEG
can explore the electrophysiological correlates of intrinsic activity and connectivity and how these
relate to network models from neuroimaging. Second, iEEG can explore the temporal priority of
network recruitment during DN activation by examining the time course of activity throughout the
brain. Third, direct electrical stimulation can be utilized to probe the directionality and time course
of the DN’s intra- and internetwork interactions using cortico-cortical evoked potentials (CCEPs).
We discuss each approach sequentially in the following sections.

Intrinsic Activity of the Default Network
Scalp-based EEG has a long history of investigating spontaneous fluctuations in the brain’s
electrical activity and identifying canonical oscillations reliably associated with various parts of
the brain [63,64]. Can similar observations be made for the DN? A study in 2012 [48] was the
first to report that the PMC displayed strong intrinsic theta band oscillations (�4–5 Hz peak) at
rest, in contrast to nearby visual areas, which instead showed canonical alpha band oscillations
(�8–10 Hz peak). Analysis of cross-frequency coupling revealed that HFB (70–180 Hz) ampli-
tude at rest was coupled with the phase of ongoing theta oscillations in the PMC (i.e., phase-
amplitude coupling), suggesting that patterns of intrinsic activity in DN areas (at least PMC) are
readily distinguishable from other brain regions [48]. This study demonstrated that the PMC
shows patterns of intrinsic oscillatory activity that are distinct from nearby sensorimotor brain
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regions, yet similar to distal areas like the MTL [65], with which PMC likely cooperates to
instantiate memory recall and other forms of internally directed cognition [48]. More specula-
tively, the authors noted that theta/HFB coupling displayed slow modulation (<1 Hz), providing
a potential link between local population coordination and slower intrinsic connectivity dynam-
ics [48]. These findings were an important step toward identifying a potential oscillatory
‘signature’ for the DN, but did not test if these motifs are correlated across multiple DN regions.

Intrinsic Connectivity of the Default Network
The defining feature of intrinsic brain networks identified with BOLD fMRI is the spontaneous
correlation of slow (<0.1 Hz) signal fluctuations [66,67]. Given that iEEG signals can vary on a
much faster timescale than fMRI BOLD signals, how can these different timescales be linked?
One common solution is to examine the low-frequency components of fast activity by extract-
ing the slow fluctuations (i.e., low-pass filtering) of the amplitude envelope of a frequency band
of interest (e.g., the HFB range [68,69]).

To date, this approach has proven to be a fruitful assay of fMRI-like connectivity patterns [30].
For instance, taking such an approach to spontaneous iEEG connectivity, it has been shown
[68] that slow spontaneous fluctuations (<0.1 Hz) in high-gamma (40–100 Hz) envelope signals
were highly correlated between the left and right auditory cortex. Early on, researchers working
with non-human primates had proposed that the anatomical selectivity of such correlations
might mimic functional connectivity patterns seen in fMRI [69], a hypothesis echoed by others
[68]. A number of follow-up studies have confirmed this prediction, showing consistent spatial
patterns of BOLD fMRI and iEEG-envelope functional connectivity within subjects, including
throughout many nodes of the DN [30,70–72].

Employing a related yet analytically distinctive approach, intracranial recordings from medial PFC
and PCC showed that these spatially distributed DN regions exhibited coherent activity peaking at
�0.017 Hz at higher frequencies (65–110 Hz) (i.e., envelope spectral coherence) [73]. This
frequency of interregional coherence was almost identical to the peak power observed in intrinsic
BOLD signal fluctuations recorded from the same patients [73]. Usingmethods more akin toearlier
work [68], more recent research [30] showed that correlation patterns over medial and lateral
parietal cortex using iEEG consistently identified DN subregions, specifically the PCC/RSC and
angular gyrus (AG). These patterns of iEEG connectivity, using slow (<1 Hz) fluctuations in HFB
amplitude, showed high spatial correlation with fMRI connectivity patterns within subjects [30].
Importantly, whentheslowfluctuationsof other frequencybands wereexplored (e.g., theta, alpha,
beta), iEEG connectivity patterns, although observed, were anatomically coarse (extending into
non-DN regions). This observation of significant, but anatomically nonspecific, iEEG correlations
for slow fluctuations of lower frequency bands is consistent with earlier observations [68].
However, more recent reports, focused on different DN regions, suggest that while slow fluctua-
tions of high-frequency activity is the most reliable correlate of resting-state fMRI connectivity,
other frequency bands might also play a role, and low frequency slow fluctuations may differ
between intrinsic networks [71] (Figure 3C). This work requires further exploration, and extension
to other brain states where low-frequency activity is more varied.

If functional connectivity patterns truly reflect intrinsic network organization, they should exhibit
some stability across brain states. Partially addressing this question, a recent study [30]
investigated iEEG intrinsic connectivity between posterior nodes of the DN (PCC/RSC and
AG) and found that, as anticipated, intrinsic connectivity was intact across rest, an internally
directed memory task, and sleep (Figure 3B). This suggests that these slow fluctuations reflect
intrinsic network properties that are subsequently modulated by behavioral state and cognition
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Figure 3. Intrinsic Connectivity, Internetwork Interactions, and Electrical Stimulation of the Default Network. (A) Considerable correspondence between
maps of intrinsic functional connectivity as measured with fMRI blood oxygen level-dependent (BOLD) (two leftmost panels) and intracranial electroencephalography
(iEEG) power restricted to high-gamma power (HGP) (50–150 Hz) (rightmost panel) across lateral default network (DN) regions as well as other brain networks. Color
indicates strength of correlated spontaneous activity at each point with a seed region in the medial prefrontal cortex (PFC) DN hub (white-rimmed circle in leftmost
panel). Black circles highlight positive correlations with other default regions for both methods, and conversely, white boxes underscore anticorrelations with various
non-default regions. (B) Using electrodes in the posterior cingulate cortex as seed regions, significant intrinsic connectivity is observed with the angular gyrus while
performing an episodic memory task, at rest, and during sleep. (C) Spatial correlation of intrinsic connectivity maps across iEEG and fMRI BOLD in the default mode
network (DMN) is driven most strongly by power in the theta (4–8 Hz) and higher frequency (50–100 Hz) ranges. Other networks [somatomotor network (SMN), dorsal
attention network (DAN), and frontoparietal control network (FPC)] show similarities but also differences in their correspondence spectra. (D) Precise timing of high-
frequency broadband activations in a DN hub [here, posteromedial cortex (PMC)] during an episodic memory task compared with its deactivation during math and
activation of superior parietal lobule (SPL) regions during the same conditions. The delayed activation and deactivation of the PMC compared with SPL suggests that the
DN lies higher in a hierarchy of information flow through the brain. (E) High-frequency electrical brain stimulation along the medial occipital and dorsomedial parietal
cortical surface often elicits visual and motor effects, respectively, but has no effect within posterior parietal DN regions (posterior cingulate cortex/retrosplenial cortex).
(A) Reproduced, with permission, from [70], (B) reproduced, with permission, from [30], (C) reproduced, with permission, from [71], (D) reproduced, with permission,
from [104], and (E) reproduced, with permission, from [95]. Abbreviations: GSR, global signal regression; ROL, response onset latency.
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[74]. Nonetheless, although these regions were correlated across all conditions, they showed
the highest correlation during the self-referential episodic memory condition, during which
these regions are most actively engaged (Figure 2F).

Collectively, iEEG has provided several important insights about the electrophysiology of DN
intrinsic connectivity. First, a variety of methods have confirmed that the iEEG signal shows
correlated slow intrinsic fluctuations (<1 Hz) between DN areas commensurate with slow
spontaneous fluctuations in the fMRI BOLD signal [30,48,73,75]. Second, these patterns of
iEEG intrinsic connectivity correlate well with connectivity patterns in the fMRI BOLD signal at
the same sites in the same individuals [30,70,71] (Figure 3A). Third, power in specific frequency
bands contributes most to slow iEEG fluctuations in intrinsic connectivity, with HFB the most
consistent and anatomically specific correlate [30,70,71], although other frequency bands
(<20 Hz) might also play a role [71,76] (Figure 3C). These findings are important because
different frequency bands reflect distinctive neurophysiological processes: whereas changes in
HFB amplitude are likely to reflect population spiking, oscillatory activity in lower frequencies
might reflect neurophysiological events, such as excitability fluctuations, that coordinate long-
distance communication [77]. Finally, intrinsic connectivity between DN areas is preserved
across multiple cognitive states (Figure 3B), a major corroboration of findings from neuroim-
aging [13–16]. Going beyond mere replication, however, iEEG has shown that cross-state
patterns of connectivity similarity are largely limited to high-beta and HFB power [30].

Temporal Priority and Internetwork Coordination
The millisecond temporal resolution of iEEG allows for detailed examination of the timing of DN
region recruitment, as well as DN communication with other networks, providing important
clues about the mechanisms of intra- and internetwork communication. For instance, there are
differences in mean deactivation latencies across DN areas (Figure 2B) on the order of tens to
hundreds of milliseconds [26–28], far too fast to detect with present fMRI methods. With
respect to activations, although the AG and PCC/RSC show no significant differences in their
mean response times [30], this might not be true for more widely dispersed regions within a
network, a question that needs to be examined in future work. IEEG can also answer questions
about the timing of internetwork interactions and information flow and their relation to DN
activations. For instance, visual and attention networks are recruited faster than PCC and RSC
during various forms of cognition (Figure 3D). Taken together, subtle timing differences suggest
that DN regions might not simply activate and deactivate en masse, despite appearances from
functional neuroimaging; and internetwork timing differences hint at hierarchies of information
flow, and possibly also control, within and between intrinsic networks, each of which may have
a specific ‘temporal receptive window’ related to its optimal functioning [78].

Additionally, significant phase synchronization (specifically in the 3–5 Hz theta range) occurs
between RSC and more anterior regions of the MTL (outside the DN) for episodic memory
judgments, but not control conditions [51]. Critically, the theta band synchronization between
RSC and MTL consistently peaks prior to the onset of the relatively late (�400 ms) HFB
responses in RSC, suggesting that internetwork interactions precede task-specific DN acti-
vations. These results are consistent with the finding (discussed above) that populations in the
more ventral regions of the PMC, which have stronger anatomical connections to MTL regions
[79,80], display earlier activations in response to episodic memory recall than populations in
more dorsal aspects of the PMC [28]. Together, the iEEG evidence strongly suggests that the
DN activation consistently observed during memory recall is in fact preceded by activity in, and
communication with, areas outside the DN, such as anterior aspects of the MTL [51,81,82].
Collectively, these fine-scale differences in temporal priority (Figure 3D) have implications not
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only for our understanding of which regions initiate internally directed forms of cognition and
how [83], but also for models seeking to elucidate which regions preferentially ‘drive’ network
activity and how these can be perturbed in the service of clinical interventions [62] (Box 4).

Directionality and Time Course of Intra- and Internetwork Communication
Interactions between nodes within the DN, and between the default and other networks, can be
directly investigated with iEEG using single pulse electrical stimulation (also known as CCEPs;
[84]). In this approach, repeated single-pulses of electrical charge are delivered at a target
electrode site while recording the responses elicited at other electrodes throughout the brain
[84–87]. Research has shown that the pattern and magnitude of evoked responses predicts
subject-specific intrinsic network connectivity recorded independently with resting-state fMRI
[85]. Many questions about DN function and connectivity could be explored using similar
paradigms to investigate both the magnitude and timing of CCEPs. For instance, several detailed
explorations of the magnitude of CCEPs suggest that many bidirectional connections are
asymmetrical (i.e., show differential strength) [86,88,89]. A straightforward interpretation of this
asymmetry is that for any given pair of brain regions, certain regions (‘projectors’) are better at
driving activity in the reciprocally connected brain area, whereas others (‘integrators’) play a more
integrative or computational role [86,88,89].

A recent study went beyond investigation of the magnitude of CCEPs to examine their detailed
directionality and temporal dynamics [87]. The researchers functionally identified iEEG elec-
trode locations within subject-specific networks of interest (default, frontoparietal, and salience
networks) using presurgical resting-state fMRI intrinsic connectivity in the same individuals. The
CCEPs that resulted from stimulating sites within each network revealed two important
findings. First, interactions among the three intrinsic networks were not mutually bidirectional:
evoked responses elicited across networks were clearly asymmetrical. Second, temporal
patterns of signal propagation within and between networks were not equivalent: stimulation
of the frontoparietal and salience networks evoked strong responses at an earlier processing
stage in all networks, whereas stimulating the DN influenced the frontoparietal and salience
networks at a significantly later stage (>100 ms difference) [87]. These findings suggest
differences in ‘temporal receptive window’ across networks [78]: the DN may be influencing
other networks after they have finished their own local processing, whereas the engagement of

Box 4. Electroceutical Interventions for Clinical Dysfunctions of the Default Network

Numerous psychiatric, neurological, and neurodegenerative diseases implicate the default network (DN) [121–124].
Developing a deeper understanding of the DN’s functioning in healthy people therefore lays the groundwork for better
models of, and interventions for, neuropsychiatric disease. Noninvasive electroceutical interventions, like transcranial
magnetic stimulation, are leading the way [125], but currently have limited ability to reach and specifically target deep
brain structures (including many DN regions) in large brains, such as those of humans. As the limitations of lesioning,
pharmaceuticals, and noninvasive electrical interventions for mental health disorders are increasingly appreciated
[126–128], the use of intracranial electroencephalography methods for focal neuromodulation is also becoming
increasingly common and sophisticated [114,129–133], and might also result in fewer long-term adverse effects [127].

StimulationofDNregionsper se isneithernecessary for modulating DNfunction,nor necessarily thebest meansofdoing so,
because focal electrical stimulation has widespread effects on even distal brain regions [134,135]. Pilot studies have already
investigated howfocalstimulation ofparticular regions influences DNactivity and connectivityandhow these changesmight
relate to symptom improvements in neuropsychiatric disease such as depression and obsessive-compulsive disorder
[114,115,136–138], but these studies should be viewed as valuable proofs-of-concept rather than proven therapies.
Nonetheless, deep brain stimulation (DBS) interventions are reversible, adaptable, and can be continually ameliorated as
both technological expertise and understanding of brain disease improve [132,133,139]. Challenges on the immediate
horizon include minimizing adverse side-effects of surgical implantation and subsequent stimulation [140,141]; developing
an understanding of neural mechanisms of action [134,142]; exploring whether genetics predisposes particular individuals
to being more or less responsive to intracranial stimulation, as is suggested for transcranial stimulation methods [143,144];
and building ‘smart’ stimulation devices that act preemptively and/or adaptively [130,145].
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salience and frontoparietal networks might make a more instantaneous impact on other
networks, a hypothesis needing further exploration.

Probing the Causal Importance of the Default Network
Injectinghigh-frequency electrical current (typically �50 Hz, �1–10 mA) into the brain has longbeen
known to both elicit subjective experiences [90,91] and sometimes disrupt ongoing cognitive or
motor processes [92]. High-frequency electrical brain stimulation (hf-EBS) has been applied
widely throughout cortical and subcortical structures in clinical ‘functional mapping’ sessions
[93,94], but despite providing uniquely causal information about a region’s functioning, reports
of hf-EBS to DN areas, especially the major hubs along the medial surface of the brain, have been
scarce.

Administering more than 800 electrical stimulations throughout medial posterior brain regions in
25 passively resting epilepsy patients, our group [95] found that stimulation to PCC and RSC
never yielded subjective experiences or disturbances of any kind (Figure 3E). Given the role of
these areas in memory recall [96], and their selective iEEG activity both at rest and during self-
referential thinking and memory recall [28–30,52], it seems likely that hf-EBS administered
during internally directed tasks could cause an interruption in these cognitive functions, albeit
without eliciting effects in the subjective or perceptual domain.

hf-EBS has been applied to various other putative default regions in scattered case reports [93],
but virtually none of these studies has confirmed that stimulation sites were specifically within
DN boundaries, or undertaken a systematic investigation including reporting of null effects. A
thorough understanding of the effects of hf-EBS to DN regions is an important project for future
research, and will require targeted studies employing large cohorts, precise electrode locali-
zation, and detailed subjective reports.

Relevance of the Non-Human Default Network
Although the explicit focus of this review has been on the human DN, recent years have seen
the discovery of parallel (and possibly homologous) ‘default’ networks in the macaque [17],
chimpanzee [97], cat [98], rat [99], and mouse [100]. A deep understanding of the human DN
will need to include an account of the ways in which it is similar to potentially homologous
networks in other mammals, but also what makes it unique. Here we provide a brief sketch of
what is known so far about such similarities and differences, as well as highlighting how human
iEEG provides unique information that goes beyond findings from animal studies.

First, functional neuroimaging methods have delineated intrinsically connected networks in
animals that roughly parallel the human DN, including nodes in medial PFC, PMC, lateral
parietal cortex, and lateral temporal cortex [17,97–100]. Despite the importance of these
findings, cross-state comparisons have so far been sparse in animal studies because fMRI
without anesthesia is challenging in most species (for an exception, see [101]). In humans,
conversely, it has been straightforward to demonstrate the persistence of DN intrinsic con-
nectivity across multiple conscious states with both fMRI and iEEG (Figure 3B [30]).

Second, task-induced deactivation of a DN region has been reported in monkeys: having
macaques engage in attention or working memory tasks reliably suppressed neuron spiking in
CGp [33] (a homolog of human PCC). Moreover, and reminiscent of findings in humans
discussed above, less suppression of activity in CGp predicted performance errors as well
as slower reaction times, again corroborating the findings from human research that DN
deactivation has functional significance.
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While animal studies have therefore been able, in a limited way, to study DN intrinsic connec-
tivity (usually under anesthesia) and task-induced deactivations (in a single DN region), we are
aware of no reports of task-induced activations specifically investigating DN function in the
animal literature. The growing body of iEEG research investigating the many complex forms of
cognition that activate DN regions in humans (such as episodic memory recall and self-
referential judgments; [28–30,51,52]) will therefore provide a unique contribution to our under-
standing of the DN.

Concluding Remarks and Future Perspectives
Investigation of the DN has progressed rapidly since its initial discovery and has now become a
major research program. Thesuccess of this project depends critically on a clear recognition of the
strengths and weaknesses of the various tools at our disposal, and on their resourceful combina-
tion in research contexts. While iEEG offers spatially and temporally precise neural information at
the implantedelectrodesites, electrode coverage canbesparse in any given patient,and standard
iEEG electrodes simultaneously record the activity of hundreds of thousands of neurons [19].
Specialized microelectrodes can resolve the differential responses of individual neurons in the
human brain [102], but such methods are still employed only rarely in iEEG research.

Combining iEEG with other methods, such as fMRI, can often mitigate these concerns by
providing broader context and mutually corroborative data (Box 3). And despite its limitations,
human iEEG goes beyond simply replicating what is already known, or can be known, from
noninvasive lines of research in humans or from invasive recordings in non-human mammalian
brains. By implementing intracranial methods in human participants who can provide self-
reports and execute complex cognitive-affective tasks, iEEG is making a unique contribution by
illuminating what DN activation, suppression, and connectivity are (in terms of underlying
electrophysiology) and what they mean (in terms of behavioral and cognitive consequences
for ‘higher’ mental processes).

The major task ahead for the field is to continue moving beyond a purely correlational
understanding of the DN toward high spatiotemporal resolution models of: (i) electrophysio-
logical foundations, (ii) intraregional functional heterogeneity, (iii) intra- and internetwork com-
munication, (iv) neural and subjective effects of direct electrical perturbation, and (iv)
relationships with cognition and behavior (see Outstanding Questions). Clinicians can then
leverage the knowledge gleaned from this developing neuromechanistic account to (v) better
understand, and hopefully treat, neurological and psychiatric conditions involving DN dysfunc-
tion (Box 4). Advancing our understanding of the DN will therefore have many ramifications both
for fathoming the marvelous complexity of the healthy brain at work, as well as treating the many
ways this functioning can go awry in brain disease.
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Outstanding Questions
How is ‘deactivation’ instantiated at
the single-cell level in the default net-
work (DN) and elsewhere? Can single-
neuron studies in humans clarify
whether reduced single-neuron
activity (i.e., firing rate) plays any func-
tional role and whether particular neu-
ronal types (e.g., interneurons) are
involved?

What is the functional significance of
the rapid (<300 ms) responses in DN
regions during the switch from
engagement in externally directed
tasks to rest? What neural mecha-
nisms are involved? Is this ‘switch sig-
nal’ the cause or the result of
disengagement from externally ori-
ented tasks?

What is the significance of functionally
heterogeneous neuronal populations
within other DN regions beyond the
posteromedial cortex (PMC)?

What is the electrophysiological basis
of DN involvement in behavioral corre-
lates such as attentional stability,
tracking changing narratives, and
functioning on ‘autopilot’?

How are both competitive and coop-
erative internetwork interactions medi-
ated and instantiated at the
electrophysiological level, both at rest
and during tasks? Are specific fre-
quency ranges of electrophysiological
activity of particular importance?

What mechanisms drive the slow
dynamics of DN intrinsic connectivity?
Is this slow variation causally linked to
other important psychophysiological
processes? Are glial cells important?

What are the subjective effects of
direct electrical stimulation to DN areas
beyond the PMC? Does stimulation
affect or impair performance on exter-
nally and/or internally directed tasks?

How do putatively homologous
‘default’ networks in non-human pri-
mates and rodents differ functionally
and electrophysiologically from the
human DN?

How can iEEG methods best be har-
nessed to understand and treat the
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